Convective Systems of the North Australian Monsoon

نویسندگان

  • MICK POPE
  • CHRISTIAN JAKOB
  • MICHAEL J. REEDER
چکیده

The climatology of convection over northern Australia and the surrounding oceans, based on six wet seasons (September–April), is derived from the Japanese Meteorological Agency Geostationary Meteorological Satellite-5 (GMS-5) IR1 channel for the years from 1995/96 to 2000/01. This is the first multiyear study of this kind. Clouds are identified at two cloud-top temperature thresholds: 235 and 208 K. The annual cycle of cloudiness over northern Australia shows an initial (October–November) buildup over the Darwin region before widespread cloudiness develops over the entire region during the monsoon months (December–February), followed by a northward contraction during March and April. Tracking mesoscale convective systems (MCSs) reveals that both the size of the cloud systems and their lifetimes follow power-law distributions. For short-lived MCSs (less than 12 h), the initial expansion of the cloudy area is related to the lifetime, with mergers important for long-lived MCSs (greater than 24 h). During periods of deep zonal flow, which coincide with the active phase of the monsoon, the number of convective elements in the Darwin region peaks in the early afternoon, which is characteristic of the diurnal cycle over land. In contrast, when the zonal flow is deep and easterly and the monsoon is in a break phase, the areal extent of the convective elements in the Darwin region is greatest in the late morning, which is more typical of maritime convection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding and Prediction of Monsoon Weather and Climate - abstracts of the sixth CAWCR Workshop

This paper provides a brief summary of some of the recent research completed using radar observations of convective cloud systems associated with the North-Australian monsoon. The key focus is to describe the variability of convective cloud system properties as a function of the large scale regimes characterizing the region. This latter work is linked with the evaluation of the ACCESS model and...

متن کامل

Heat and Moisture Sources and Sinks of Asian Monsoon Precipitating Systems

The structure and properties of , heat and moisture sources and sinks of the Asian monsoon are reviewed. Results from the First GARP Global Experiment (FGGE) have yielded important information on these sources, ranging from the planetary scale down to the scale of individual convective systems. The emerging picture is one of a complex spatial and temporal distribution of heat sources over the e...

متن کامل

Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space

[1] Global measurements of the 500–825 hPa layer mean HDO/H2O ratio from the Tropospheric Emission Spectrometer (TES) are used to expose differences in the dominant hydrologic processes in the Amazon, north Australian, and Asian monsoon regions. The data show high regional isotopic variability and numerous values unexpected from classical Rayleigh theory. Correlation analysis shows that mixing ...

متن کامل

Large-Scale Patterns Associated with Tropical Cyclogenesis in the Western Pacific

Five characteristic, low-level, large-scale dynamical patterns associated with tropical cyclogenesis in the western North Pacific basin are examined along with their capacity to generate the type of mesoscale convective systems that precede genesis. An 8-yr analysis set for the region is used to identify, and create composites for, the five characteristic patterns of monsoon shear line, monsoon...

متن کامل

GPS observations of precipitable water and implications for the predictability of precipitation during the North American Monsoon

I. Introduction: The semi-arid to arid North American Southwest has experienced, in recent decades, tremendous population growth despite limited water supplies. Water availability is highly susceptible to climate variability and change and is therefore of great concern. Climate models generally predict the region will experience warmer and drier winters in the future. During summer, incursions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008